题目内容
点P是⊙O外一点,PA、PB分别切⊙O于点A、B,∠P=70°,点C是⊙O上的点(不与点A、B重合),则∠ACB等于( )
A.70° | B.55° | C.70°或110° | D.55°或125° |
如图,
∵PA、PB分别切⊙O于点A、B,
∴∠OAP=∠OBP=90°,
∵∠P=70°,
∴∠AOB=110°,
∴∠ACB=55°,
当点C在劣弧AB上,
∵∠AOB=110°,
∴弧ACB的度数为250°,
∴∠ACB=125°.
故选D.
∵PA、PB分别切⊙O于点A、B,
∴∠OAP=∠OBP=90°,
∵∠P=70°,
∴∠AOB=110°,
∴∠ACB=55°,
当点C在劣弧AB上,
∵∠AOB=110°,
∴弧ACB的度数为250°,
∴∠ACB=125°.
故选D.
练习册系列答案
相关题目