题目内容
【题目】如图,菱形OABC的顶点O在坐标原点,顶点A在x轴上,∠B=120°,OA=4,将菱形OABC绕原点顺时针旋转105°至OA′B′C′的位置,则点B′的坐标为( )
A. (2,﹣2)B. (,-)C. (2,﹣2)D. (,-)
【答案】A
【解析】
首先连接OB,OB′,过点B′作B′E⊥x轴于E,由旋转的性质,易得∠BOB′=105°,由菱形的性质,易证得△AOB是等边三角形,即可得OB′=OB=OA=2,∠AOB=60°,继而可求得∠AOB′=45°,由等腰直角三角形的性质,即可求得答案.
连接OB,OB′,过点B′作B′E⊥x轴于E,
根据题意得:∠BOB′=105°,
∵四边形OABC是菱形,
∴OA=AB,∠AOB=∠AOC=∠ABC=×120°=60°,
∴△OAB是等边三角形,
∴OB=OA=4,
∴∠AOB′=∠BOB′-∠AOB=105°-60°=45°,OB′=OB=4,
∴OE=B′E=OB′sin45°=4×=2,
∴点B′的坐标为:(2,-2).
故选A.
练习册系列答案
相关题目