题目内容
【题目】如图1,△ABC中,CA=CB,点O在高CH上,OD⊥CA于点D,OE⊥CB于点E,以O为圆心,OD为半径作⊙O.
(1)求证:⊙O与CB相切于点E;
(2)如图2,若⊙O 过点H,且AC=5,AB=6,连结EH,求△BHE的面积.
【答案】
(1)证明:∵CA=CB,点O在高CH上,
∴∠ACH=∠BCH,
∵OD⊥CA,OE⊥CB,
∴OE=OD,
∴圆O与CB相切于点E
(2)解:∵CA=CB,CH是高,
∴AH=BH= AB=3,
∴CH= =4,
∵点O在高CH上,圆O过点H,
∴圆O与AB相切于H点,
由(1)得圆O与CB相切于点E,
∴BE=BH=3,
如图,过E作EF⊥AB,则EF∥CH,
∴△BEF∽△BCH,
∴ = ,即 = ,
解得:EF= ,
∴S△BHE= BHEF= ×3× =
【解析】(1)由CA=CB,且CH垂直于AB,利用三线合一得到CH为角平分线,再由OD垂直于AC,OE垂直于CB,利用角平分线定理得到OE=OD,利用切线的判定方法即可得证;(2)由CA=CB,CH为高,利用三线合一得到AH=BH,在直角三角形ACH中,利用勾股定理求出CH的长,由圆O过H,CH垂直于AB,得到圆O与AB相切,由(1)得到圆O与CB相切,利用切线长定理得到BE=BH,如图所示,过E作EF垂直于AB,得到EF与CH平行,得出△BEF与△BCH相似,由相似得比例,求出EF的长,由BH与EF的长,利用三角形面积公式即可求出△BEH的面积.
【考点精析】掌握三角形的内切圆与内心是解答本题的根本,需要知道三角形的内切圆的圆心是三角形的三条内角平分线的交点,它叫做三角形的内心.
练习册系列答案
相关题目