题目内容
【题目】某体育馆计划从一家体育用品商店一次性购买若干个气排球和篮球(每个气排球的价格都相同,每个篮球的价格都相同).经洽谈,购买1个气排球和2个篮球共需210元;购买2个气排球和3个篮球共需340元.
(1)每个气排球和每个篮球的价格各是多少元?
(2)该体育馆决定从这家体育用品商店一次性购买气排球和篮球共50个,总费用不超过3200元,且购买气排球的个数少于30个,应选择哪种购买方案可使总费用最低?最低费用是多少元?
【答案】
(1)
【解答】解:设每个气排球的价格是x元,每个篮球的价格是y元.
根据题意得:
解得:
所以每个气排球的价格是50元,每个篮球的价格是80元.
(2)
设购买气排球x个,则购买篮球(50﹣x)个.
根据题意得:50x+80(50﹣x)≤3200
解得x≥,
又∵排球的个数小于30个,
∴排球的个数可以为27,28,29,
∵排球比较便宜,则购买排球越多,总费用越低,
∴当购买排球29个,篮球21个时,费用最低.
29×50+21×80=1450+1680=3130元.
【解析】(1)设每个气排球的价格是x元,每个篮球的价格是y元,根据购买1个气排球和2个篮球共需210元;购买2个气排球和3个篮球共需340元列方程组求解即可;
(2)设购买气排球x个,则购买篮球(50﹣x)个,根据总费用不超过3200元,且购买气排球的个数少于30个确定出x的范围,从而可计算出最低费用.
练习册系列答案
相关题目