题目内容
【题目】如图,矩形ABCD中,∠ABD、∠CDB的平分线BE、DF分别交边AD、BC于点E、F.
(1)求证:四边形BEDF是平行四边形;
(2)当∠ABE为多少度时,四边形BEDF是菱形?请说明理由.
【答案】
(1)证明:∵四边形ABCD是矩形,
∴AB∥DC、AD∥BC,
∴∠ABD=∠CDB,
∵BE平分∠ABD、DF平分∠BDC,
∴∠EBD= ∠ABD,∠FDB= ∠BDC,
∴∠EBD=∠FDB,
∴BE∥DF,
又∵AD∥BC,
∴四边形BEDF是平行四边形
(2)证明:当∠ABE=30°时,四边形BEDF是菱形,
∵BE平分∠ABD,
∴∠ABD=2∠ABE=60°,∠EBD=∠ABE=30°,
∵四边形ABCD是矩形,
∴∠A=90°,
∴∠EDB=90°﹣∠ABD=30°,
∴∠EDB=∠EBD=30°,
∴EB=ED,
又∵四边形BEDF是平行四边形,
∴四边形BEDF是菱形
【解析】(1)由矩形可得∠ABD=∠CDB,结合BE平分∠ABD、DF平分∠BDC得∠EBD=∠FDB,即可知BE∥DF,根据AD∥BC即可得证;(2)当∠ABE=30°时,四边形BEDF是菱形,由角平分线知∠ABD=2∠ABE=60°、∠EBD=∠ABE=30°,结合∠A=90°可得∠EDB=∠EBD=30°,即EB=ED,即可得证.
【考点精析】本题主要考查了平行四边形的判定与性质和菱形的判定方法的相关知识点,需要掌握若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段以对角线的交点为中点,并且这两条直线二等分此平行四边形的面积;任意一个四边形,四边相等成菱形;四边形的对角线,垂直互分是菱形.已知平行四边形,邻边相等叫菱形;两对角线若垂直,顺理成章为菱形才能正确解答此题.
练习册系列答案
相关题目