题目内容
【题目】如图,△ABC内接于⊙O,BD为⊙O的直径,BD与AC相交于点H,AC的延长线与过点B的直线相交于点E,且∠A=∠EBC.
(1)求证:BE是⊙O的切线;
(2)已知CG∥EB,且CG与BD、BA分别相交于点F、G,若BGBA=48,FG= ,DF=2BF,求AH的值.
【答案】
(1)
证明:连接CD,
∵BD是直径,
∴∠BCD=90°,即∠D+∠CBD=90°,
∵∠A=∠D,∠A=∠EBC,
∴∠CBD+∠EBC=90°,
∴BE⊥BD,
∴BE是⊙O切线.
(2)
解:∵CG∥EB,
∴∠BCG=∠EBC,
∴∠A=∠BCG,
∵∠CBG=∠ABC
∴△ABC∽△CBG,
∴ ,即BC2=BGBA=48,
∴BC=4 ,
∵CG∥EB,
∴CF⊥BD,
∴△BFC∽△BCD,
∴BC2=BFBD,
∵DF=2BF,
∴BF=4,
在RT△BCF中,CF= =4 ,
∴CG=CF+FG=5 ,
在RT△BFG中,BG= =3 ,
∵BGBA=48,
∴ 即AG=5 ,
∴CG=AG,
∴∠A=∠ACG=∠BCG,∠CFH=∠CFB=90°,
∴∠CHF=∠CBF,
∴CH=CB=4 ,
∵△ABC∽△CBG,
∴ ,
∴AC= ,
∴AH=AC﹣CH= .
【解析】(1)欲证明BE是⊙O的切线,只要证明∠EBD=90°.
(2)由△ABC∽△CBG,得 = 求出BC,再由△BFC∽△BCD,得BC2=BFBD求出BF,CF,CG,GB,再通过计算发现CG=AG,进而可以证明CH=CB,求出AC即可解决问题.本题考查切线的判定、圆的有关知识、相似三角形的判定和性质、勾股定理.等腰三角形的判定和性质等知识,解题的关键是巧妙利用相似三角形的性质解决问题,属于中考压轴题.
练习册系列答案
相关题目