题目内容
【题目】在Rt△ACB中,∠C=90°,点O是AB的中点,点M,N分别在边AC,BC上,OM⊥ON,连MN,AC=4,BC=8,设AM=a,BN=b,MN=c.
(1)求证:a2+b2=c2;
(2)①若a=1,求b;②探究a与b的函数关系;
(3)△CMN面积的最大值为(不写解答过程)
【答案】
(1)证明:如图,过点B作BE∥AC交MO的延长线于E,连接NE.
∵AM∥BE,
∴∠A=∠OBE,
在△AOM和△BOE中,
,
∴△AOM≌△BOE,
∴MO=OE,AM=BE=a,
∵OM⊥ON,
∴MN=NE=c,
∵∠C=90°
∴∠A+∠ABC=90°,
∴∠OBE+∠ABC=90°,
∴∠EBN=90°,
∴NE2=BN2+BE2,
∵NE=c,BE=a,BN=b,
∴a2+b2=c2
(2)①在RT△MNC中,MN2=CM2+CN2,
∴c2=(4﹣a)2+(8﹣b)2,∵a=1,a2+b2=c2,
∴9+(8﹣b)2=1+b2,
∴b=
②∵c2=(4﹣a)2+(8﹣b)2=a2+b2,
∴a+2b=10
(3)
【解析】(3)S△CMN= (4﹣a)(8﹣b)=﹣b2+11b﹣24=﹣(b﹣ )2+ ,∴当b= 时,S△CMN最大值= .
所以答案是 .
【考点精析】本题主要考查了勾股定理的概念的相关知识点,需要掌握直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2才能正确解答此题.
练习册系列答案
相关题目