题目内容

【题目】先阅读理解下面的例题,再按要求解答下列问题:
例题:解一元二次不等式x2﹣4>0
解:∵x2﹣4=(x+2)(x﹣2)
∴x2﹣4>0可化为
(x+2)(x﹣2)>0
由有理数的乘法法则“两数相乘,同号得正”,得
解不等式组①,得x>2,
解不等式组②,得x<﹣2,
∴(x+2)(x﹣2)>0的解集为x>2或x<﹣2,
即一元二次不等式x2﹣4>0的解集为x>2或x<﹣2.
(1)一元二次不等式x2﹣16>0的解集为
(2)分式不等式 的解集为
(3)解一元二次不等式2x2﹣3x<0.

【答案】
(1)x>4或x<﹣4
(2)x>3或x<1
(3)

解:∵2x2﹣3x=x(2x﹣3)

∴2x2﹣3x<0可化为

x(2x﹣3)<0

由有理数的乘法法则“两数相乘,异号得负”,得

解不等式组①,得0<x<

解不等式组②,无解,

∴不等式2x2﹣3x<0的解集为0<x<


【解析】解:(1.)∵x2﹣16=(x+4)(x﹣4)
∴x2﹣16>0可化为
(x+4)(x﹣4)>0
由有理数的乘法法则“两数相乘,同号得正”,得

解不等式组①,得x>4,
解不等式组②,得x<﹣4,
∴(x+4)(x﹣4)>0的解集为x>4或x<﹣4,
即一元二次不等式x2﹣16>0的解集为x>4或x<﹣4.
(2.)∵

解得:x>3或x<1
【考点精析】本题主要考查了分式方程的应用和一元一次不等式组的应用的相关知识点,需要掌握列分式方程解应用题的步骤:审题、设未知数、找相等关系列方程、解方程并验根、写出答案(要有单位);1、审:分析题意,找出不等关系;2、设:设未知数;3、列:列出不等式组;4、解:解不等式组;5、检验:从不等式组的解集中找出符合题意的答案;6、答:写出问题答案才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网