题目内容

【题目】如图,正△ABC的边长为2,过点B的直线l⊥AB,且△ABC与△A′BC′关于直线l对称,D为线段BC′上一动点,则AD+CD的最小值是(  )
A.4
B.3
C.2
D.2+

【答案】C
【解析】解:连接CC′,连接A′C交l于点D,连接AD,此时AD+CD的值最小,如图所示.

∵△ABC与△A′BC′为正三角形,且△ABC与△A′BC′关于直线l对称,
∴四边形CBA′C′为边长为2的菱形,且∠BA′C′=60°,
∴A′C=2× A′B=2
故选C.
【考点精析】根据题目的已知条件,利用等边三角形的性质和轴对称-最短路线问题的相关知识可以得到问题的答案,需要掌握等边三角形的三个角都相等并且每个角都是60°;已知起点结点,求最短路径;与确定起点相反,已知终点结点,求最短路径;已知起点和终点,求两结点之间的最短路径;求图中所有最短路径.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网