题目内容
【题目】如图,在△ABC中,∠C=90°,AC=3,BC=4,点O是BC中点,将△ABC绕点O旋转得△A′B' C′,则在旋转过程中点A、C′两点间的最大距离是_______.
【答案】2+
【解析】
连接OA,AC′,如图,易得OC=2,再利用勾股定理计算出OA=,接着利用旋转的性质得OC′=OC=2,根据三角形三边的关系得到AC′≤OA+OC′(当且仅当点A、O、C′共线时,取等号),从而得到AC′的最大值.
解:连接OA,AC′,如图,
∵点O是BC中点,
∴OC=BC=2,
在Rt△AOC中,OA=,
∵△ABC绕点O旋转得△A′B'C′,
∴OC′=OC=2,
∵AC′≤OA+OC′(当且仅当点A、O、C′共线时,取等号),
∴AC′的最大值为2+,
即在旋转过程中点A、C′两点间的最大距离是2+ .
故答案为2+.
练习册系列答案
相关题目