题目内容

【题目】在直角墙角AOB(OA⊥OB,且OA、OB长度不限)中,要砌20m长的墙,与直角墙角AOB围成地面为矩形的储仓,且地面矩形AOBC的面积为96m2

(1)求这地面矩形的长;
(2)有规格为0.80×0.80和1.00×1.00(单位:m)的地板砖单价分别为55元/块和80元/块,若只选其中一种地板砖都恰好能铺满储仓的矩形地面(不计缝隙),用哪一种规格的地板砖费用较少?

【答案】
(1)

解:设这地面矩形的长是xm,则依题意得:

x(20﹣x)=96,

解得x1=12,x2=8(舍去),

答:这地面矩形的长是12米


(2)

解:规格为0.80×0.80所需的费用:96×(0.80×0.80)×55=8250(元).

规格为1.00×1.00所需的费用:96×(1.00×1.00)×80=7680(元).

因为8250<7680,

所以采用规格为1.00×1.00所需的费用较少


【解析】(1)根据题意表示出长方形的长,进而利用长×宽=面积,求出即可;(2)分别计算出每一规格的地板砖所需的费用,然后比较即可.此题主要考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网