题目内容
【题目】如图,点P是矩形ABCD内一点,连接PA、PB、PC、PD,已知AB=3,BC=4,设△PAB, △PBC, △PCD, △PDA,的面积分别为,,, ,以下判断: ①PA+PB+PC+PD的最小值为10;②若△PAB≌△PCD,则△PAD≌△PBC ;③若=,则=;④若△PAB∽△PDA,则PA=2.4.其中正确的是_____________(把所有正确的结论的序号都填在横线上)
【答案】①②③④
【解析】分析:①当点P是矩形ABCD两对角线的交点时,PA+PB+PC+PD的值最小,根据勾股定理可得PA+PB+PC+PD的最小值,即可判断;
②根据全等三角形的性质可得PA=PC,PB=PD,那么P在线段AC、BD的垂直平分线上,即P是矩形ABCD两对角线的交点,易证△PAD≌△PBC,即可判断;
③易证S1+S3=S2+S4,所以若S1=S2,则S3=S4,即可判断;
④根据相似三角形的性质可得∠PAB=∠PDA,∠PAB+∠PAD=∠PDA+∠PAD=90°,利用三角形内角和定理得出∠APD=180°-(∠PDA+∠PAD)=90°,同理可得∠APB=90°,那么∠BPD=180°,即B、P、D三点共线,根据三角形面积公式可得PA=2.4,即可判断.
详解:①当点P是矩形ABCD两对角线的交点时,PA+PB+PC+PD的值最小,根据勾股定理得,AC=BD=5,所以PA+PB+PC+PD的最小值为10,故①正确;
②若△PAB≌△PCD,则PA=PC,PB=PD,所以P在线段AC、BD的垂直平分线上,即P是矩形ABCD两对角线的交点,所以△PAD≌△PBC,故②正确;
③若=,易证+=+,则=,故③正确;
④若△PAB△PDA,则∠PAB=∠PDA,∠PAB+∠PAD=∠PDA+∠PAD=90°,∠APD=180°(∠PDA+∠PAD)=90°,同理可得∠APB=90°,那么∠BPD=180°,B.P、D三点共线,P是直角△BAD斜边上的高,根据面积公式可得PA=2.4,故④正确.
故答案为①②③④.