题目内容

【题目】如图,AB为⊙O的直径,CD两点均在⊙O上,过点CCEAD于点E,且AC平分∠BAD.

(1)求证:CE为⊙O的切线;

(2)连结BDAC于点F,若CF=5,sin∠CAD=,求线段BD的长.

【答案】(1)见解析;(2) .

【解析】分析:(1连结OCBD于点G.证明∠ECA+ACO=90°即可得到结论;

2)设DF=3x,则AF=5xAD=4x.由CAD=ACO,得到sinFCG=进而表示出BGOGOBRtOBG中,由勾股定理得到OB2=OG2+BG2,解方程即可得出结论.

详解1连结OCBD于点G

AC平分BAD,∴∠CAD=CAB

OA=OC,∴∠CAB=ACO

CEAD ∴∠E=90°,∴∠EAC+ECA=90°

∴∠ECA+ACO=90°,∴CEO的切线

2)设DF=3x,则AF=5xAD=4x

ABO的直径,∴∠ADB=90°,∴BDCE,∴OCBD

∵∠CAD=ACO,∴sinFCG=

CF=5,∴CG=4FG=3,∴DG=BG=3x+3

OCAE,∴OG=AD=2x,∴OC=OB=4+2x

RtOBG中,OB2=OG2+BG2,∴(4+2x)2=(2x)2+(3x+3)2

x=-1

又∵x>0,∴x=,∴BD=2BG=

练习册系列答案
相关题目

【题目】数学问题:用边长相等的正三角形、正方形和正六边形能否进行平面图形的镶嵌?

问题探究:为了解决上述数学问题,我们采用分类讨论的思想方法去进行探究.

探究一:从正三角形、正方形和正六边形中任选一种图形,能否进行平面图形的镶嵌?

第一类:选正三角形.因为正三角形的每一个内角是60°,所以在镶嵌平面时,围绕某一点有6个正三角形的内角可以拼成一个周角,所以用正三角形可以进行平面图形的镶嵌.

第二类:选正方形.因为正方形的每一个内角是90°,所以在镶嵌平面时,围绕某一点有4个正方形的内角可以拼成一个周角,所以用正方形也可以进行平面图形的镶嵌.

第三类:选正六边形.(仿照上述方法,写出探究过程及结论)

探究二:从正三角形、正方形和正六边形中任选两种图形,能否进行平面图形的镶嵌?

第四类:选正三角形和正方形

在镶嵌平面时,设围绕某一点有x个正三角形和y个正方形的内角可以拼成个周角.根据题意,可得方程

60x+90y360

整理,得2x+3y12

我们可以找到唯一组适合方程的正整数解为.

镶嵌平面时,在一个顶点周围围绕着3个正三角形和2个正方形的内角可以拼成一个周角,所以用正三角形和正方形可以进行平面镶嵌

第五类:选正三角形和正六边形.(仿照上述方法,写出探究过程及结论)

第六类:选正方形和正六边形,(不写探究过程,只写出结论)

探究三:用正三角形、正方形和正六边形三种图形是否可以镶嵌平面?

第七类:选正三角形、正方形和正六边形三种图形.(不写探究过程,只写结论)

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网