题目内容
【题目】如图,线段AB经过圆心O,交⊙O于点A、C,点D为⊙O上一点,连结AD、OD、BD,∠BAD=∠B=30°.
(1)求证:BD是⊙O的切线.
(2)若OA=8,求OA、OD与弧AD围成的扇形的面积.
【答案】(1)证明见解析;(2)π.
【解析】
(1)求出∠A=∠ADO=30°,求出∠DOB=60°,求出∠ODB=90°,根据切线的判定推出即可;(2)根据扇形的面积公式即可求出答案.
(1)证明:∵OA=OD,∠A=∠B=30°,
∴∠A=∠ADO=30°,
∴∠DOB=∠A+∠ADO=60°,
∴∠ODB=180°﹣∠DOB﹣∠B=90°,
∵OD是半径,
∴BD是⊙O的切
(2)∵∠DOB=60°,
∴∠AOD=120°,
∵AO=8,
∴OA、OD与弧AD围成的扇形的面积==π.
练习册系列答案
相关题目