题目内容

【题目】在△ABC中,AB=BC,∠ABC=90°.以AB为斜边作等腰直角三角形ADB.点P是直线DB上一个动点,连接AP,作PE⊥AP交BC所在的直线于点E.

(1)如图1,点P在BD的延长线上,PE⊥EC,AD=1,直接写出PE的长;
(2)点P在线段BD上(不与B,D重合),依题意,将图2补全,求证:PA=PE;
(3)点P在DB的延长线上,依题意,将图3补全,并判断PA=PE是否仍然成立.

【答案】
(1)

解:∵AD=DB=1,∠ADB=90°,

∴∠ABP=45°,AB= =

∵PE⊥AP,AB⊥BC,

∴PA∥EC,

∴PA⊥AB,

∴四边形ABEP是矩形,

∵∠ABP=45°,

∴PA=AB,

∴四边形ABEP是正方形,

∴PE=AB=


(2)

解:∵△ABC和△ADB是等腰直角三角形,

∴∠ADB=90°,∠DAB=∠DBA=45°,

∴∠PBN=45°

∴PE⊥AP,∠DAP=∠BPE=90°﹣∠DPA,

∵∠PAM=45°﹣∠DAP,∠PEN=45°﹣∠BPE,

∴∠PAM=∠PEN,

过P作PM⊥AB于点M,过P作PN⊥BC于点N,

则PM=PN,∠BPN=45°,

在△APM和△EPN中,

∴△APM≌△EPN,

∴PA=PE;


(3)

解:∵△ABC和△ADB是等腰直角三角形,

∴∠ABD=45°,

∴∠PBN=45°,∠ABC=90°,

过P作PM⊥AB于点M,过P作PN⊥BC于点N,

则四边形BMPN是矩形,

∵∠NBP=45°,

∴四边形BMPN是正方形,

∴PM=PN,

∵AB⊥BC,

∴∠BAN=∠APN,

∵AP⊥PE,

∴∠APN=∠E,

∴∠BAP=∠E,

在△AMP与△ENP中,

∴△AMP≌△ENP,

∴AP=PE.


【解析】(1)根据等腰直角三角形的性质得到∠ABP=45°,根据勾股定理得到AB= = ,推出四边形ABEP是矩形,得到四边形ABEP是正方形,于是得到结论;(2)根据等腰直角三角形的性质得到∠ADB=90°,∠DAB=∠DBA=45°,求得∠PBN=45°过P作PM⊥AB于点M,过P作PN⊥BC于点N,于是得到PM=PN,∠BPN=45°根据全等三角形的性质即可得到结论;(3)根据等腰直角三角形的性质得到∠ABD=45°,得到∠PBN=45°,∠ABC=90°,过P作PM⊥AB于点M,过P作PN⊥BC于点N,得到四边形BMPN是矩形,推出四边形BMPN是正方形,得到PM=PN,根据全等三角形的性质即可得到结论.
【考点精析】掌握等腰直角三角形和正方形的判定方法是解答本题的根本,需要知道等腰直角三角形是两条直角边相等的直角三角形;等腰直角三角形的两个底角相等且等于45°;先判定一个四边形是矩形,再判定出有一组邻边相等;先判定一个四边形是菱形,再判定出有一个角是直角.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网