题目内容

【题目】如图,在△ABC中,BDACD.若∠A:ABC:ACB=3:4:5,E为线段BD上任一点.

(1)试求∠ABD的度数;

(2)求证:∠BEC>∠A.

【答案】(1)45°;(2)证明见解析.

【解析】

(1)依据三角形的内角和是180°,可求∠A=45°,B=60°,C=75°.又BDAC,所以∠ABD=45°.

(2)依据三角形的外角大于与它不相邻的任一内角,可证∠BEC>BDC>A,即∠BEC>A.

(1)∵∠A+ABC+ACB=180°,A:ABC:ACB=3:4:5,

∴∠A=45°,B=60°,C=75°,

BDAC,

∴∠ADB=90°,

∴∠ABD=90°-A=45°;

(2)∵∠BECCDE的外角,

∴∠BEC>BDC,

∵∠BDCABD的外角,

∴∠BDC>A,

∴∠BEC>A.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网