题目内容

【题目】如图,在平面直角坐标系中,点O为坐标原点,直线l与抛物线相交于A(1,),B(4,0)两点.

(1)求出抛物线的解析式;

(2)在坐标轴上是否存在点D,使得△ABD是以线段AB为斜边的直角三角形?若存在,求出点D的坐标;若不存在,说明理由;

(3)点P是线段AB上一动点,(点P不与点A、B重合),过点P作PM∥OA,交第一象限内的抛物线于点M,过点M作MC⊥x轴于点C,交AB于点N,若△BCN、△PMN的面积S△BCN、S△PMN满足S△BCN=2S△PMN,求出的值,并求出此时点M的坐标.

【答案】(1);(2)D(1,0)或(0,)或(0,;(3)M().

【解析】

试题分析:(1)由A、B两点的坐标,利用待定系数法可求得抛物线解析式;

(2)分D在x轴上和y轴上,当D在x轴上时,过A作AD⊥x轴,垂足D即为所求;当D点在y轴上时,设出D点坐标为(0,d),可分别表示出AD、BD,再利用勾股定理可得到关于d的方程,可求得d的值,从而可求得满足条件的D点坐标;

(3)过P作PF⊥CM于点F,利用Rt△ADO∽Rt△MFP以及三角函数,可用PF分别表示出MF和NF,从而可表示出MN,设BC=a,则可用a表示出CN,再利用S△BCN=2S△PMN,可用PF表示出a的值,从而可用PF表示出CN,可求得的值;借助a可表示出M点的坐标,代入抛物线解析式可求得a的值,从而可求出M点的坐标.

试题解析:

(1)∵A(1,),B(4,0)在抛物线的图象上,∴,解得,∴抛物线解析式为

(2)存在三个点满足题意,理由如下:

当点D在x轴上时,如图1,过点A作AD⊥x轴于点D,∵A(1,),∴D坐标为(1,0);

当点D在y轴上时,设D(0,d),则,且,∵△ABD是以AB为斜边的直角三角形,∴

,即,解得d=D点坐标为(0,)或(0,);

综上可知存在满足条件的D点,其坐标为(1,0)或(0,)或(0,

(3)如图2,过P作PF⊥CM于点F,∵PM∥OA,∴Rt△ADO∽Rt△MFP,∴=,∴MF=PF,在Rt△ABD中,BD=3,AD=,∴tan∠ABD=,∴∠ABD=60°,设BC=a,则CN=a,在Rt△PFN中,∠PNF=∠BNC=30°,∴tan∠PNF=,∴FN=PF,∴MN=MF+FN=PF,∵S△BCN=2S△PMN,∴,∴a=PF,∴NC=a=PF,∴==,∴MN=NC==a,∴MC=MN+NC=()a,∴M点坐标为(4﹣a,()a),又M点在抛物线上,代入可得=()a,解得a=或a=0(舍去),OC=4﹣a=,MC=,∴点M的坐标为().

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网