题目内容

【题目】在数轴上,点A,B,C表示的数分别是-6,10,12.点A以每秒3个单位长度的速度向右运动,同时线段BC以每秒1个单位长度的速度也向右运动.

(1)运动前线段AB的长度为________

(2)当运动时间为多长时,点A和线段BC的中点重合?

(3)试探究是否存在运动到某一时刻,线段AB=AC?若存在,求出所有符合条件的点A表示的数;若不存在,请说明理由.

【答案】(1)16;(2);(3)1519.

【解析】

(1)根据两点间的距离公式即可求解;
(2)先根据中点坐标公式求得B、C的中点,再设当运动时间为x秒长时,点A和线段BC的中点重合,根据路程差的等量关系列出方程求解即可;
(3)设运动时间为y秒,分两种情况:当点A在点B的左侧时,当点A在线段AC上时,列出方程求解即可.

(1)运动前线段AB的长度为10﹣(﹣6)=16;

(2)设当运动时间为x秒长时,点A和线段BC的中点重合,依题意有

﹣6+3t=11+t,

解得t=

故当运动时间为 秒长时,点A和线段BC的中点重合

(3)存在,理由如下:设运动时间为y秒,

①当点A在点B的左侧时,依题意有(10+y)﹣(3y﹣6)=2,解得y=7,

﹣6+3×7=15;

②当点A在线段BC上时,依题意有(3y-6)-(10+y)=

解得y=

综上所述,符合条件的点A表示的数为1519.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网