题目内容

【题目】△ABC中,BC=12,高AD=8,矩形EFGH的一边GH在BC上,顶点E、F分别在AB、AC上,AD与EF交于点M.

(1)求证:

(2)设EF=x,EH=y,写出y与x之间的函数表达式;

(3)设矩形EFGH的面积为S,求S与x之间的函数表达式,并写出S的最大值.

【答案】(1)见解析;(2)y=8﹣x(0<x<12);(3)S矩形EFGH=﹣(x﹣6)2+24,Smax=24.

【解析】

(1)先判断出AM是△AEF的高,再判断出△AEF∽△ABC,即可得出结论;(2)先判断出四边形EMDG是矩形,得出DM=EH,进而表示出AM=8﹣y,借助(1)的结论即可得出结论;(3)由矩形的面积公式得出函数关系式,即可得出结论.

解:(1)∵四边形EFGH是矩形,

∴EF∥BC,

∵AD是△ABC的高,

∴AD⊥BC,

∴AM⊥EF,

∵EF∥BC,

∴△AEF∽△ABC,

(相似三角形的对应边上高的比等于相似比);

(2)∵四边形EFGH是矩形,

∴∠FEH=∠EHG=90°,

∵AD⊥BC,

∴∠HDM=90°=∠FEH=∠EHG,

∴四边形EMDH是矩形,

∴DM=EH,

∵EF=x,EH=y,AD=8,

∴AM=AD﹣DM=AD﹣EH=8﹣y,

由(1)知,

∴y=8﹣x(0<x<12);

(3)由(2)知,y=8﹣x,

∴S=S矩形EFGH=xy=x(8﹣x)=﹣(x﹣6)2+24,

∵a=﹣<0,

∴当x=6时,Smax=24.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网