题目内容
【题目】2020年1月的日历表如表所示:
日 | 一 | 二 | 三 | 四 | 五 | 六 |
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
快到放寒假了,班主任孙老师看日历届时准备安排一节假期安全班会课,孙老师把日历与本学期书本上73页的数学活动3联系在一起,经过思索后,孙老师给孩子们展示两个问题:
(1)若连续三天的号数之和等于48,那么这三天分别是几号?
(2)用一个“T”字形的框在表中框出四个数,这四个数的和能等于83吗?为什么?
【答案】(1)这三天分别是15号,16号,17号;(2)不能.理由见解析.
【解析】
(1)设中间日期为x号,根据连续日期的性质,列出方程,即可得解;
(2)根据题意,设T字框内处于中间且靠上方的数为2n﹣1,则框内该数左边的数为2n﹣3,右边的为2n+1,下面的数为2n﹣1+10,列出方程求解,即可判定.
(1)若是连续的三天,设中间日期为x号,
则前一天为(x﹣1)号,后一天为(x+1)号,
由题意得:x﹣1+x+x+l=48,
解得:x=16.
所以这三天分别是15号,16号,17号.
(2)不能.
理由如下:由题意,设T字框内处于中间且靠上方的数为2n﹣1,
则框内该数左边的数为2n﹣3,右边的为2n+1,下面的数为2n﹣1+10,
∴T字框内四个数的和为:
2n﹣3+2n﹣1+2n+1+2n﹣1+10=8n+6.
根据题意,得8n+6=83,
解得n=
由于n必须为正整数,因此n=不符合题意.
故框住的四个数的和不能等于83.
【题目】事业单位人员编制连进必考,现一事业单位需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方而进行量化考核.甲、乙、丙各项得分如下表:
笔试 | 面试 | 体能 | |
甲 | 84 | 80 | 88 |
乙 | 94 | 92 | 69 |
丙 | 81 | 84 | 78 |
(1)根据三项得分的平均分,从高到低确定三名应聘者的排名顺序;
(2)该单位规定:笔试、面试、体能分分别不得低于80分,80分,70分,并按60%,30%,10%的比例计入总分.根据规定,请你说明谁将被录用.