题目内容
【题目】已知:如图,四边形ABCD为矩形,,,点E是CD的中点,点P在AB上以每秒2个单位的速度由A向B运动,设运动时间为t秒.
(1)当点P在线段AB上运动了t秒时,__________________(用代数式表示);
(2)t为何值时,四边形PDEB是平行四边形:
(3)在直线AB上是否存在点Q,使以D、E、Q、P四点为顶点的四边形是菱形?若存在,求出t的值:若不存在,说明理由.
【答案】(1);(2)当时,四边形PDEB是平行四边形;(3)t的值为或或.
【解析】
(1)求出PA,根据线段和差定义即可解决问题.
(2)根据,构建方程即可解决问题.
(3)①当时,可得四边形DEPQ,四边形是菱形,②当时,可得四边形是菱形,分别求解即可解决问题.
解:(1),,
,
故答案为.
(2)当时,四边形PDEB是平行四边形,
,
,
答:当时,四边形PDEB是平行四边形.
(3)存在.
①当时,可得四边形DEPQ,四边形是菱形,
作于H.
在中,,,
,
或,
或时,可得四边形DEPQ,四边形是菱形.
②当时,可得四边形是菱形,易知:,
,
综上所述,满足条件的t的值为或或.
练习册系列答案
相关题目