题目内容
【题目】如图,在正方形ABCD中,如果AF=BE,那么∠AOD的度数是 .
【答案】90°
【解析】解:由ABCD是正方形,得
AD=AB,∠DAB=∠B=90°.
在△ABE和△DAF中,
∴△ABE≌△DAF,
∴∠BAE=∠ADF.
∵∠BAE+∠EAD=90°,
∴∠OAD+∠ADO=90°,
∴∠AOD=90°,
所以答案是:90°.
【考点精析】通过灵活运用正方形的性质,掌握正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形即可以解答此题.
练习册系列答案
相关题目
【题目】某教研机构为了了解初中生课外阅读名著的现状,随机抽取了某校50名初中生进行调查,依据相关数据绘制成了以下不完整的统计图,请根据图中信息解答下列问题:
类别 | 重视 | 一般 | 不重视 |
人数 | a | 15 | b |
(1)求表格中a,b的值;
(2)请补全统计图;
(3)若某校共有初中生2000名,请估计该校“重视课外阅读名著”的初中生人数.