题目内容

【题目】如图1,△ABC是边长为4cm的等边三角形,边AB在射线OM上,且OA=6cm,点D从O点出发,沿OM的方向以1cm/s的速度运动,当D不与点A重合时,将△ACD绕点C逆时针方向旋转60°得到△BCE,连结DE.

(1)求证:△CDE是等边三角形;
(2)如图2,当6<t<10时,△BDE的周长是否存在最小值?若存在,求出△BDE的最小周长;若不存在,请说明理由;
(3)如图3,当点D在射线OM上运动时,是否存在以D、E、B为顶点的三角形是直角三角形?若存在,求出此时t的值;若不存在,请说明理由.

【答案】
(1)

证明:∵将△ACD绕点C逆时针方向旋转60°得到△BCE,

∴∠DCE=60°,DC=EC,

∴△CDE是等边三角形;


(2)

解:存在,当6<t<10时,

由旋转的性质得,BE=AD,

∴C△DBE=BE+DB+DE=AB+DE=4+DE,

由(1)知,△CDE是等边三角形,

∴DE=CD,

∴C△DBE=CD+4,

由垂线段最短可知,当CD⊥AB时,△BDE的周长最小,

此时,CD=2 cm,

∴△BDE的最小周长=CD+4=2 +4;


(3)

解:存在,①∵当点D与点B重合时,D,B,E不能构成三角形,

∴当点D与点B重合时,不符合题意,

②当0≤t<6时,由旋转可知,∠ABE=60°,∠BDE<60°,

∴∠BED=90°,

由(1)可知,△CDE是等边三角形,

∴∠DEB=60°,

∴∠CEB=30°,

∵∠CEB=∠CDA,

∴∠CDA=30°,

∵∠CAB=60°,

∴∠ACD=∠ADC=30°,

∴DA=CA=4,

∴OD=OA﹣DA=6﹣4=2,

∴t=2÷1=2s;

③当6<t<10s时,由∠DBE=120°>90°,

∴此时不存在;

④当t>10s时,由旋转的性质可知,∠DBE=60°,

又由(1)知∠CDE=60°,

∴∠BDE=∠CDE+∠BDC=60°+∠BDC,

而∠BDC>0°,

∴∠BDE>60°,

∴只能∠BDE=90°,

从而∠BCD=30°,

∴BD=BC=4,

∴OD=14cm,

∴t=14÷1=14s,

综上所述:当t=2或14s时,以D、E、B为顶点的三角形是直角三角形.


【解析】(1)由旋转的性质得到∠DCE=60°,DC=EC,即可得到结论;(2)当6<t<10时,由旋转的性质得到BE=AD,于是得到C△DBE=BE+DB+DE=AB+DE=4+DE,根据等边三角形的性质得到DE=CD,由垂线段最短得到当CD⊥AB时,△BDE的周长最小,于是得到结论;(3)存在,①当点D与点B重合时,D,B,E不能构成三角形,②当0≤t<6时,由旋转的性质得到∠ABE=60°,∠BDE<60°,求得∠BED=90°,根据等边三角形的性质得到∠DEB=60°,求得∠CEB=30°,求得OD=OA﹣DA=6﹣4=2,于是得到t=2÷1=2s;③当6<t<10s时,此时不存在;④当t>10s时,由旋转的性质得到∠DBE=60°,求得∠BDE>60°,于是得到t=14÷1=14s.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网