题目内容
【题目】已知:如图,在△ABC中,DE、DF是△ABC的中位线,连接EF、AD,其交点为O.求证:
(1)△CDE≌△DBF
(2)OA=OD
【答案】
(1)
证明:∵DE、DF是△ABC的中位线,
∴DF=CE,DF∥CE,DB=DC.
∵DF∥CE,
∴∠C=∠BDF.
在△CDE和△DBF中,
∴△CDE≌△DBF (SAS)
(2)
证明:∵DE、DF是△ABC的中位线,
∴DF=AE,DF∥AE,
∴四边形DEAF是平行四边形,
∵EF与AD交于O点,
∴AO=OD
【解析】(1)根据三角形中位线,可得DF与CE的关系,DB与DC的关系,根据SAS,可得答案;
(2)根据三角形的中位线,可得DF与AE的关系,根据平行四边形的判定与性质,可得答案.
练习册系列答案
相关题目