题目内容
【题目】如图,⊙O为△ABC的内切圆,D、E、F分别为切点,已知∠C=90°,⊙O半径长为1cm,BC=3cm,则AD长度为__cm.
【答案】3
【解析】
如图,连接OD、OE、OF,由切线的性质和切线长定理可得OD⊥AB,OE⊥BC,OF⊥AC,AF=AD,BE=BD,接着证明四边形OECF为正方形,则CE=OE=CF=OF=1cm,所以BE=BD=2cm,由勾股定理可求AD的长.
解:如图,连接OE,OF,OD,
∵⊙O为△ABC内切圆,与三边分别相切于D、E、F,
∴OD⊥AB,OE⊥BC,OF⊥AC,AF=AD,BE=BD,
∴四边形OECF为矩形
而OF=OE,
∴四边形OECF为正方形,
∴CE=OE=CF=OF=1cm,
∴BE=BD=2cm,
∵AC2+BC2=AB2,
∴(AD+1)2+9=(AD+2)2,
∴AD=3cm,
故答案为:3
练习册系列答案
相关题目