题目内容

【题目】如图,在Rt△ABC中,∠BAC=90°,O是AB边上的一点,以OA为半径的⊙O与边BC相切于点E.

(1)若AC=6,BC=10,求⊙O的半径.

(2)过点E作弦EF⊥AB于M,连接AF,若∠AFE=2∠ABC,求证:四边形ACEF是菱形.

【答案】(1)圆O半径为r=3;(2)证明见解析.

【解析】试题分析:(1)连接OE,设圆的半径为r,在直角三角形ABC中,利用勾股定理求出AB的长,根据BC与圆相切,得到OE垂直于BC,进而得到一对直角相等,再由一对公共角,利用两角相等的三角形相似得到△BOE与△ABC相似,由相似得比例求出r的值即可;

(2)利用同弧所对的圆周角相等,得到∠AOE=4∠B,进而求出∠B与∠F的度数,根据EF与AD垂直,得到一对直角相等,确定出∠MEB=∠F=60°,CA与EF平行,进而得到CB与AF平行,确定出四边形ACEF为平行四边形,再由∠CAB为直角,得到CA为圆的切线,利用切线长定理得到CA=CE,利用邻边相等的平行四边形为菱形即可得证.

试题解析:(1)连接OE,设圆O半径为r,

在Rt△ABC中,AC=6,BC=10,

根据勾股定理得:AB= =8,

∵BC与圆O相切,∴OE⊥BC,∴∠OEB=∠BAC=90°,

∵∠B=∠B,∴△BOE∽△BCA,∴,即,解得:r=3;

(2)∵,∠AFE=2∠ABC,∴∠AOE=2∠AFE=4∠ABC,

∵∠AOE=∠OEB+∠ABC,∴∠ABC=30°,∠F=60°,

∵EF⊥AD,∴∠EMB=∠CAB=90°,∴∠MEB=∠F=60°,CA∥EF,∴CB∥AF,

∴四边形ACEF为平行四边形,

∵∠CAB=90°,OA为半径,∴CA为圆O的切线,

∵BC为圆O的切线,∴CA=CE,∴平行四边形ACEF为菱形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网