题目内容
【题目】如图,在平面直角坐标系中,一次函数y=kx+b的图象与x轴交点为A(-3,0),与y轴交点为B,且与正比例函数的图象的交于点C(m,4).
(1)求m的值及一次函数y=kx+b的表达式;
(2)若点P是y轴上一点,且△BPC的面积为6,请直接写出点P的坐标.
【答案】(1)m的值为3,一次函数的表达式为
(2) 点P 的坐标为(0, 6)、(0,-2)
【解析】
(1)首先利用待定系数法把C(m,4)代入正比例函数y=x中,计算出m的值,进而得到C点坐标,再利用待定系数法A、C两点坐标代入一次函数y=kx+b中,计算出k、b的值进而得到一次函数解析式.
(2)利用△BPC的面积为6,即可得出点P的坐标.
解:(1)∵ 点C(m,4)在正比例函数的图象上,
∴ ·m, 即点C坐标为(3,4)
∵ 一次函数 经过A(-3,0)、点C(3,4)
∴ 解得:
∴ 一次函数的表达式为
(2) 点P 的坐标为(0, 6)、(0,-2)
“点睛”此题主要考查了待定系数法求一次函数解析式知识,根据待定系数法把A、C两点坐标代入函数y=kx+b中,计算出k、b的值是解题关键.
练习册系列答案
相关题目