题目内容
【题目】如图,已知点O在直线AB上,将一副直角三角板的直角顶点放在点O处,其中∠OCD=60°,∠OEF=45°.边OC、OE在直线AB上.
(1)如图(1),若CD和EF相交于点G,则∠DGF的度数是______°;
(2)将图(1)中的三角板OCD绕点O顺时针旋转30°至图(2)位置
①若将三角板OEF绕点O顺时针旋转180°,在此过程中,当∠COE=∠EOD=∠DOF时,求∠AOE的度数;
②若将三角板OEF绕点O以每秒4°的速度顺时针旋转180°,与此同时,将三角板OCD绕点O以每秒1°的速度顺时针旋转,当三角板OEF旋转到终点位置时,三角板OCD也停止旋转.设旋转时间为t秒,当OD⊥EF时,求t的值.
【答案】(1)15;(2)①当∠COE=∠EOD=∠DOF时,∠AOE=75°;②当OD⊥EF时,t的值为25.
【解析】
(1)根据三角形外角的性质即可得到结论;
(2)①如图2,根据已知条件求出∠COE=∠EOD=45°,得到∠AOE=∠AOC+∠COE=30°+45°=75°,当∠COE=∠EOD=∠DOF时,求得结论;②根据垂直的定义得到OD⊥EF,得到∠OHE=90,列方程求得结论.
(1)∵∠EFO=45°,∠D=30°,
∴∠DGF=∠EFO-∠D=45°-30°=15°,
故答案为:15;
(2)①如图2,
∵∠COE=∠EOD=∠DOF,∠COE+∠EOD=∠COD,∠COD=90°,
∴∠COE=∠EOD=45°,
∴∠AOE=∠AOC+∠COE=30°+45°=75°,
当∠COE=∠EOD=∠DOF时,∠AOE=75°;
②∵∠AOE=4t°,∠AOC=30°+t°,如图3,
∵OD⊥EF,
∴∠OHE=90,
∵∠E=45°,∠COD=90°,
∴∠COE=45°,
∴∠AOE-∠AOC=∠COE=45°,
即4t-(30+t)=45,
∴t=25,
∴当OD⊥EF时,t的值为25.