题目内容
【题目】如图,在△ABC中,∠C=90°,AC=BC,AB=4cm,AD平分∠BAC交BC于点D,DE⊥AB于点E,则以下结论:①AD平分∠CDE;②DE平分∠BDA;③AE-BE=BD;④△BDE周长是4cm.其中正确的有( )
A. 4个B. 3个C. 2个D. 1个
【答案】B
【解析】
根据角平分线性质求出CD=DE,根据等腰三角形的判定得出BE=DE,求出CD=DE=BE,根据勾股定理和CD=DE求出AC=AE,求出AC=AE=BC,再逐个判断即可.
解:∵DE⊥AB,
∴∠DEA=∠DEB=90°,
∵AD平分∠CAB,
∴∠CAD=∠BAD,
∵∠C=90°,∠CDA+∠C+∠CAD=180°,∠DEA+∠BAD+∠EDA=180°,
∴∠CDA=∠EDA,∴①正确;
∵在△ABC中,∠C=90°,AC=BC,
∴∠CAB=∠B=45°,
∵∠C=∠DEA=∠DEB=90°,
∴∠CDE=360°-90°-45°-90°=135°,∠BDE=180°-90°-45°=45°,
∵∠CDA=∠EDA,
∴∠CDA=∠EDA==67.5°≠45°,
∴∠EDA≠∠BDE,
∴DE不平分∠BDA,∴②错误;
∵AD平分∠CAB,∠C=90°,DE⊥AB,
∴CD=DE,
由勾股定理得:AC=AE,
∵AC=BC,
∴AE=AC=BC,
∵∠B=∠BDE=45°,
∴BE=DE=CD,
∴AE-BE=BC-CD=BD,∴③正确;
△BDE周长是BE+DE+BD=BE+CD+BD=BC+BE=AE+BE=AB=4cm,∴④正确;
即正确的个数是3,
故选:B.
练习册系列答案
相关题目