题目内容

【题目】如图,在ABC中,ABBC的垂直平分线相交于三角形内一点O,下列结论中错误的是(

A. OAC的垂直平分线上

B. AOBBOCCOA都是等腰三角形

C. OAB+OBC+OCA=

D. OABBCCA的距离相等

【答案】D

【解析】

根据相对垂直平分线的性质定理及判定定理即可判定选项A;由选项A的结论,结合等腰三角形的判定即可判定选项B;由选项B的结论,结合三角形的内角和定理即可判定选项C;三角形三边垂直平分线的交点到三角形三个顶点的距离相等,但到三角形三边的距离不一定相等,即可判定选项D.

连接OB

ABBC的垂直平分线相交于三角形内一点O

AO=BOBO=CO

AO=CO

∴点OAC的垂直平分线上,

选项A正确;

AO=BOBO=COAO=CO

∴△AOB、△BOC、△COA都是等腰三角形,

选项B正确;

AO=BOBO=COAO=CO

∴∠OAB=ABO,∠OBC=OCB,∠OAC=OCA

∵∠BAC+ABC+ACB=180°,

∴∠OAB+OBC+OCA=90°,

选项C正确;

∵点O是三边垂直平分线的交点,

OA=OB=OC

但点OABBCCA的距离不一定相等;

选项D错误.

故选D.

练习册系列答案
相关题目

【题目】阅读下列材料,完成任务:

自相似图形

定义:若某个图形可分割为若干个都与它相似的图形,则称这个图形是自相似图形.例如:正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边的中点,连接EG,HF交于点O,易知分割成的四个四边形AEOH、EBFO、OFCG、HOGD均为正方形,且与原正方形相似,故正方形是自相似图形.

任务:

(1)图1中正方形ABCD分割成的四个小正方形中,每个正方形与原正方形的相似比为   

(2)如图2,已知ABC中,ACB=90°,AC=4,BC=3,小明发现ABC也是“自相似图形”,他的思路是:过点C作CDAB于点D,则CD将ABC分割成2个与它自己相似的小直角三角形.已知△ACD∽△ABC,则ACD与ABC的相似比为   

(3)现有一个矩形ABCD是自相似图形,其中长AD=a,宽AB=b(a>b).

请从下列A、B两题中任选一条作答:我选择   题.

A:①如图3﹣1,若将矩形ABCD纵向分割成两个全等矩形,且与原矩形都相似,则a=   (用含b的式子表示);

如图3﹣2若将矩形ABCD纵向分割成n个全等矩形,且与原矩形都相似,则a=   (用含n,b的式子表示);

B:①如图4﹣1,若将矩形ABCD先纵向分割出2个全等矩形,再将剩余的部分横向分割成3个全等矩形,且分割得到的矩形与原矩形都相似,则a=   (用含b的式子表示);

如图4﹣2,若将矩形ABCD先纵向分割出m个全等矩形,再将剩余的部分横向分割成n个全等矩形,且分割得到的矩形与原矩形都相似,则a=   (用含m,n,b的式子表示).

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网