题目内容

如图,在等腰梯形ABCD中,ADBC,AB=CD=10,AD=6,BC=18,M是CD的中点,P是BC边上的一动点(P与B,C不重合),连接PM并延长交AD的延长线于Q.
(1)当P在B,C之间运动到什么位置时,四边形ABPQ是平行四边形?请说明理由.
(2)当四边形ABPQ是直角梯形时,点P与C距离是多少?
(1)当CP=6时,四边形ABPQ是平行四边形.
理由:∵ADBC,
∴∠C=∠CDQ,∠QPC=∠Q,
∵CM=DM
∴△CMP≌△DMQ,
∴PC=DQ=6,
而BP=BC-PC=18-6=12,
AQ=AD+DQ=6+6=12,
∴BP=AQ,
∵ADBC,
∴四边形ABPQ是平行四边形.

(2)作AE⊥BC于E,DF⊥BC于F,
由于AB=CD,∠B=∠C,∠AEB=∠DFC=90°,
∴△ABE≌△DCF,
∴BE=FC,
由于AEDF,ADEF,
∴四边形AEFD是平行四边形,
∴AD=EF,
BE=
BC-AD
2
=
18-6
2
=6

AE=
AB2-BE2
=
102-62
=8

由(1)知:QM=MP,
∴MP=4,
PC=
CM2-MP2
=
52-42
=3

答:当四边形ABPQ是直角梯形时,点P与C距离是3.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网