题目内容

【题目】如图,在△ABC中,AB=AC,∠ABC=45°,以AB为直径的⊙O交BC于点D,若BC=4 ,则图中阴影部分的面积为(
A.π+1
B.π+2
C.2π+2
D.4π+1

【答案】B
【解析】解:连接OD、AD,
∵在△ABC中,AB=AC,∠ABC=45°,
∴∠C=45°,
∴∠BAC=90°,
∴△ABC是Rt△BAC,
∵BC=4
∴AC=AB=4,
∵AB为直径,
∴∠ADB=90°,BO=DO=2,
∵OD=OB,∠B=45°,
∴∠B=∠BDO=45°,
∴∠DOA=∠BOD=90°,
∴阴影部分的面积S=SBOD+S扇形DOA= + =π+2.
故选B.
【考点精析】掌握等腰三角形的性质和圆周角定理是解答本题的根本,需要知道等腰三角形的两个底角相等(简称:等边对等角);顶点在圆心上的角叫做圆心角;顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角;一条弧所对的圆周角等于它所对的圆心角的一半.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网