题目内容
【题目】如果两个一次函数y=k1x+b1和y=k2x+b2满足k1=k2 , b1≠b2 , 那么称这两个一次函数为“平行一次函数”. 如图,已知函数y=﹣2x+4的图象与x轴、y轴分别交于A、B两点,一次函数y=kx+b与y=﹣2x+4是“平行一次函数”
(1)若函数y=kx+b的图象过点(3,1),求b的值;
(2)若函数y=kx+b的图象与两坐标轴围成的三角形和△AOB构成位似图形,位似中心为原点,位似比为1:2,求函数y=kx+b的表达式.
【答案】
(1)解:由已知得:k=﹣2,
把点(3,1)和k=﹣2代入y=kx+b中得:1=﹣2×3+b,
∴b=7
(2)解:根据位似比为1:2得:函数y=kx+b的图象有两种情况:
①不经过第三象限时,过(1,0)和(0,2),这时表达示为:y=﹣2x+2;
②不经过第一象限时,过(﹣1,0)和(0,﹣2),这时表达示为:y=﹣2x﹣2;
【解析】(1)根据平行一次函数的定义可知:k=﹣2,再利用待定系数法求出b的值即可;(2)根据位似比为1:2可知:函数y=kx+b与两坐标的交点坐标,再利用待定系数法求出函数y=kx+b的表达式.
【题目】某校为了解全校学生上学期参加社区活动的情况,学校随机调查了本校50名学生参加社区活动的次数,并将调查所得的数据整理如下: 参加社区活动次数的频数、频率分布表
活动次数x | 频数 | 频率 |
0<x≤3 | 10 | 0.20 |
3<x≤6 | a | 0.24 |
6<x≤9 | 16 | 0.32 |
9<x≤12 | 6 | 0.12 |
12<x≤15 | m | b |
15<x≤18 | 2 | n |
根据以上图表信息,解答下列问题:
(1)表中a= , b=;
(2)请把频数分布直方图补充完整(画图后请标注相应的数据);
(3)若该校共有1200名学生,请估计该校在上学期参加社区活动超过6次的学生有多少人?
【题目】八(2)班组织了一次经典朗读比赛,甲、乙两队各10人的比赛成绩如下表(10分制):
甲 | 7 | 8 | 9 | 7 | 10 | 10 | 9 | 10 | 10 | 10 |
乙 | 10 | 8 | 7 | 9 | 8 | 10 | 10 | 9 | 10 | 9 |
(1)甲队成绩的中位数是分,乙队成绩的众数是分;
(2)计算乙队的平均成绩和方差;
(3)已知甲队成绩的方差是1.4分2 , 则成绩较为整齐的是队.