题目内容

【题目】如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,连接AC,过上一点E作EG∥AC交CD的延长线于点G,连接AE交CD于点F,且EG=FG,连接CE.

(1)求证:△ECF∽△GCE;

(2)求证:EG是⊙O的切线;

【答案】(1)证明见解析(2)证明见解析

【解析】(1)∠ACD=∠AEC,EG∥AC,∠G=∠ACD,

所以,∠FCE=∠ECG,可得三角形相似;

(2)连接OE,OE=OA可得∠OAE=∠OEA,GF=GE,∠GEF=∠GFE=∠AFH,

∠AFH+∠EAO=90°,可得∠GEF+∠AEO=90°, OE⊥GE,EG⊙O的切线.

∴∠ACD=∠AEC,

∵EG∥AC,

∴∠G=∠ACD,

∴∠G=∠AEC,

∵∠FCE=∠ECG,

∴△ECF∽△GCE.

(2)连接OE,

∵CD⊥AB,∴∠AHF=90°,

∴∠AFH+∠FAH=90°,

∵EG=FG,

∴∠GEF=∠GFE.

∵∠GFE=∠AFH,

∴∠GEF=∠AFH,

∵OE=OA,

∴∠OEA=∠OAE,

∴∠GEO=∠GEF+∠FEO=∠AFH+∠FAH=90°,

OE⊥GE,

∵OE⊙O的半径,

∴EG⊙O的切线.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网