题目内容
【题目】如图,在平面直接坐标系中,将反比例函数的图象绕坐标原点O逆时针旋转45°得到的曲线l,过点,的直线与曲线l相交于点C、D,则sin∠COD=___ .
【答案】.
【解析】
由题,,可得OA⊥OB,建立如图新的坐标系,OB为x′轴,OA为y′轴,利用方程组求出C、D的坐标,根据勾股定理求得OC、OD的长,根据S△OCD=S△OBC-S△OBD计算求得△OCD的面积,根据三角形面积公式求得CE的长,然后解直角三角形即可求得sin∠COD的值.
∵,
∴,,,
∴,
∴OA⊥OB,
建立如图新的坐标系,OB为x′轴,OA为y′轴.
在新的坐标系中,A(0,2),B(4,0),
∴直线AB解析式为y′=-x′+2,
由,解得或,
∴C(1,),D(3,),
∴S△OCD=S△OBC-S△OBD=,
∵C(1,),D(3,),
∴OC==,OD==,
作CE⊥OD于E,
∵S△OCD=ODCE=2,
∴CE=,
∴sin∠COD==,
故答案为.
练习册系列答案
相关题目
【题目】小李经营的车饰店销售某品牌车漆修复液,已知其进价为40元/支,试销阶段发现将售价定为80元/支时,每天可销售20支,后来为了扩大销售量,小李适当降低了售价,销售量y(支)与降价x(元)的关系如图所示.
(1)请仔细读题,并补全下面表格:
降价x/元 | … | 2 | 4 |
| x | … |
销量y/支 | … | 24 | 28 | 30 |
| … |
(2)若要使得平均每天销售这种修复液的利润W最大,则每支修复液应该降价多少元?最大的利润W为多少元?