题目内容
【题目】如图,正方形的边长是4,的平分线交于点,若点、分别是和上的动点,则的最小值是__________.
【答案】
【解析】
过作的垂线交于F,交AC于D′,再过D′作D′P′⊥AD,由角平分线的性质可得出D′是D关于AE的对称点,进而可知D′P′即为DQ+PQ的最小值.
解:过作的垂线交于F,交AC于D′,再过D′作D′P′⊥AD,如下图,
∵DD′⊥AE,
∴∠AFD=∠AFD′,
∵AF=AF,∠DAE=∠CAE,
∴△DAF≌△D′AF,
∴D′是D关于AE的对称点,AD′=AD=4,
∴D′P′即为DQ+PQ的最小值,
∵四边形ABCD是正方形,
∴∠DAD′=45°,
∴AP′=P′D′,
在Rt△AP′D′中,
P′D′2+AP′2=AD′2,AD′2=16,
∵AP′=P′D',
2P′D′2=AD′2,即2P′D′2=16,
∴P′D′=,
即的最小值是.
故答案为:.
练习册系列答案
相关题目