题目内容
【题目】多项式﹣5mx3+25mx2﹣10mx各项的公因式是 .
【答案】5mx【解析】多项式﹣5mx3+25mx2﹣10mx各项的公因式是5mx,
所以答案是:5mx.
【题目】将下列各数填入相应的括号里:﹣2.5,0,8,﹣2,,0.7,,﹣1.121121112…,,.
正数集合{ …};
负数集合{ …};
整数集合{ …};
有理数集合{ …};
无理数集合{ …};
【题目】某县为大力推进义务教育均衡发展,加强学校标准化建设,计划用三年时间对全县学校的设施和设备进行全面改造和更新.2014年县政府已投资5亿元人民币,若每年投资的增长率相同,预计2016年投资7.2亿元人民币,那么每年投资的增长率为( )
A. 20% B. 40% C. -220% D. 20%
【题目】如图,已知抛物线y=x2+bx+c与y轴交于点C,与x轴交于点A、B,且AB=2,抛物线的对称轴为直线x=2;
(1)求抛物线的函数表达式;
(2)如果抛物线的对称轴上存在一点P,使得△APC周长的值最小,求此时P点坐标及△APC周长;
(3)设D为抛物线上一点,E为对称轴上一点,若以点A、B、D、E为顶点的四边形是平行四边形,求点D的坐标.(直接写出结果)
【题目】如图,在平面直角坐标系中,直线y=-x+b分别与x轴、y轴交于点A、B,且点A的坐标为(4,0),四边形ABCD是正方形.
(1)填空:b= ;
(2)求点D的坐标;
(3)点M是线段AB上的一个动点(点A、B除外),试探索在x上方是否存在另一个点N,使得以O、B、M、N为顶点的四边形是菱形?若不存在,请说明理由;若存在,请求出点N的坐标.
【题目】某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.
(1)这次被调查的同学共有 名;“剩大量”的扇形圆心角是 .
(2)把条形统计图补充完整;
(3)在被调查的学生中随机抽取一名恰巧是“剩少量”或“剩一半左右”饭的概率多大;
(4)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校18000名学生一餐浪费的食物可供多少人食用一餐?
【题目】若3xmy3与-x2yn是同类项,则(-m)n等于( )A.6B.-6C.8D.-8
【题目】综合与探究:如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,过点B作线段BC⊥x轴,交直线y=﹣2x于点C.
(1)求该抛物线的解析式;
(2)求点B关于直线y=﹣2x的对称点B′的坐标,判定点B′是否在抛物线上,并说明理由;
(3)点P是抛物线上一动点,过点P作y轴的平行线,交线段B′C于点D,是否存在这样的点P,使四边形PBCD是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.
【题目】一次课堂练习,小璇同学做了如下4道因式分解题,你认为小璇做得不正确的一题是( )
A. a3-a=a(a2-1)
B. m2-2mn+n2=(m-n)2
C. x2y-xy2=xy(x-y)
D. x2-y2=(x-y)(x+y)