题目内容
【题目】如图,抛物线y=ax2+bx+c经过A(1,0)、B(4,0)、C(0,3)三点.
(1)求抛物线的解析式;
(2)如图①,在抛物线的对称轴上是否存在点P,使得四边形PAOC的周长最小?若存在,求出四边形PAOC周长的最小值;若不存在,请说明理由.
(3)如图②,点Q是线段OB上一动点,连接BC,在线段BC上是否存在这样的点M,使△CQM为等腰三角形且△BQM为直角三角形?若存在,求点M的坐标;若不存在,请说明理由.
【答案】y=x2﹣x+3;在抛物线的对称轴上存在点P,使得四边形PAOC的周长最小,四边形PAOC周长的最小值为9;点M的坐标为(,)或(,).
【解析】
试题分析:(1)把点A(1,0)、B(4,0)、C(0,3)三点的坐标代入函数解析式,利用待定系数法求解;
(2)A、B关于对称轴对称,连接BC,则BC与对称轴的交点即为所求的点P,此时PA+PC=BC,四边形PAOC的周长最小值为:OC+OA+BC;根据勾股定理求得BC,即可求得;(3)分两种情况分别讨论,即可求得
试题解析:(1)由已知得解得. 所以,抛物线的解析式为y=x2﹣x+3.
(2)∵A、B关于对称轴对称,如图1,连接BC, ∴BC与对称轴的交点即为所求的点P,此时PA+PC=BC,
∴四边形PAOC的周长最小值为:OC+OA+BC, ∵A(1,0)、B(4,0)、C(0,3),
∴OA=1,OC=3,BC==5, ∴OC+OA+BC=1+3+5=9;
∴在抛物线的对称轴上存在点P,使得四边形PAOC的周长最小,四边形PAOC周长的最小值为9.
(3)∵B(4,0)、C(0,3), ∴直线BC的解析式为y=﹣x+3,
①当∠BQM=90°时,如图2,设M(a,b), ∵∠CMQ>90°, ∴只能CM=MQ=b,
∵MQ∥y轴, ∴△MQB∽△COB,
∴=,即=,解得b=,代入y=﹣x+3得,=﹣a+3,解得a=, ∴M(,);
②当∠QMB=90°时,如图3, ∵∠CMQ=90°, ∴只能CM=MQ, 设CM=MQ=m, ∴BM=5﹣m,
∵∠BMQ=∠COB=90°,∠MBQ=∠OBC, ∴△BMQ∽△BOC, ∴=,解得m=,
作MN∥OB, ∴==,即==, ∴MN=,CN=, ∴ON=OC﹣CN=3﹣=, ∴M(,),
综上,在线段BC上存在这样的点M,使△CQM为等腰三角形且△BQM为直角三角形,点M的坐标为(,)或(,).