题目内容

【题目】在数学活动课上,老师要求学生在5×5的正方形ABCD网格中(小正方形的边长为1)画等腰三角形,要求三个顶点都在格点上(小正方形的顶点称为格点),用实线画四种图形,且分别符合下列各条件:

1)面积为2(画在图1中);

2)面积为4,且三边与ABAD都不平行(画在图2中);

3)面积为5,且三边与ABAD都不平行(画在图3中);

4)面积为,且三边与ABAD都不平行(画在图4中).

【答案】1)见解析;(2)见解析;(3)见解析;(4)见解析

【解析】

1)利用等腰三角形的对称性,计算等腰三角形的面积可求图形;

2)利用等腰三角形的对称性,计算等腰三角形的面积可求图形;

3)利用等腰三角形的对称性,计算等腰三角形的面积可求图形;

4)利用等腰三角形的对称性,计算等腰三角形的面积可求图形.

解:(1)如图1

MEENMGFN,∠EMG=∠FNE90°

∴△EMG≌△EFN

EGEF

∴△EFG是等腰三角形

SEFG×2×22

∴△EFG为所求等腰三角形.

2)如图2

MEENMGFN,∠EMG=∠FNE90°

∴△EMG≌△EFN

EGEF

∴△EFG是等腰三角形

SEFG3×34

∴△EFG为所求等腰三角形.

3)如图3

MEENMGFN,∠EMG=∠FNE90°

∴△EMG≌△EFN

EGEF

∴△EFG是等腰三角形

SEFG3×45

∴△EFG为所求三角形.

4)如图4

MEENMGFN,∠EMG=∠FNE90°

∴△EMG≌△EFN

EGEF

∴△EFG是等腰三角形

SEFG2×2×2×1×1×1

∴△EFG为所求等腰三角形

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网