题目内容

【题目】学校6名教师和234名学生集体外出活动,准备租用45座大车或30座小车.若租用1辆大车2辆小车共需租车费1000元;若租用2辆大车一辆小车共需租车费1100元.
(1)求大、小车每辆的租车费各是多少元?
(2)若每辆车上至少要有一名教师,且总租车费用不超过2300元,求最省钱的租车方案.

【答案】
(1)解:设大车每辆的租车费是x元、小车每辆的租车费是y元.

可得方程组

解得

答:大车每辆的租车费是400元、小车每辆的租车费是300元


(2)解:由每辆汽车上至少要有1名老师,汽车总数不能大于6辆;

又要保证240名师生有车坐,汽车总数不能小于 (取整为6)辆,

综合起来可知汽车总数为6辆.

设租用m辆大型车,则租车费用Q(单位:元)是m的函数,

即Q=400m+300(6﹣m);

化简为:Q=100m+1800,

依题意有:100m+1800≤2300,

∴m≤5,

又要保证240名师生有车坐,45m+30(6﹣m)≥240,解得m≥4,

所以有两种租车方案,

方案一:4辆大车,2辆小车;

方案二:5辆大车,1辆小车.

∵Q随m增加而增加,

∴当m=4时,Q最少为2200元.

故最省钱的租车方案是:4辆大车,2辆小车


【解析】(1)设大车每辆的租车费是x元、小车每辆的租车费是y元.根据题意:“租用1辆大车2辆小车共需租车费1000元”;“租用2辆大车一辆小车共需租车费1100元”;列出方程组,求解即可;(2)根据汽车总数不能小于 (取整为6)辆,即可求出共需租汽车的辆数;设租用大车m辆,则租车费用Q(单位:元)是m的函数,由题意得出400m+300(6﹣m)≤2300,得出取值范围,分析得出即可.
【考点精析】解答此题的关键在于理解一元一次不等式组的应用的相关知识,掌握1、审:分析题意,找出不等关系;2、设:设未知数;3、列:列出不等式组;4、解:解不等式组;5、检验:从不等式组的解集中找出符合题意的答案;6、答:写出问题答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网