题目内容
【题目】在△ABC中,∠BAC=90°,AB=AC,l是过A的一条直线,BD⊥AE于D,CE⊥AE于E.求证:
(1)当直线l绕点A旋转到如图1位置时,试说明:DE=BD+CE.
(2)若直线l绕点A旋转到如图2位置时,试说明:DE=BD﹣CE.
(3)若直线l绕点A旋转到如图3位置时,试问:BD与DE,CE具有怎样的等量关系?请写出结果,不必证明.
【答案】(1)证明见解析(2)证明见解析(3)DE=CE﹣BD
【解析】
(1) 利用条件证明△ABD≌△CAE, 再结合线段的和差可得出结论;
(2) 同 (1) 可证明△ABD≌△CAE, 再结合线段的和差可得出结论;
(3) 同理可证明△ABD≌△CAE, 再结合线段的和差可得出结论.
(1)证明:如图1,∵BD⊥l,CE⊥l,
∴∠BDA=∠CEA=90°,
∴∠ABD+∠DAB=90°.
∵∠BAC=90°,
∴∠DAB+∠CAE=90°,
∴∠ABD=∠CAE.
在△ABD和△CAE中,
,
∴△ABD≌△CAE(AAS),
∴AD=CE,BD=AE.
∵DE=AD+AE,
∴DE=CE+BD;
(2)如图2,∵BD⊥l,CE⊥l,
∴∠BDA=∠CEA=90°,
∴∠ABD+∠DAB=90°.
∵∠BAC=90°,
∴∠DAB+∠CAE=90°,∴∠ABD=∠CAE.
在△ABD和△CAE中,
,
∴△ABD≌△CAE(AAS),
∴AD=CE,BD=AE
∵DE=AE﹣AD,
∴DE=BD﹣CE.
(3)DE=CE﹣BD
如图3,∵BD⊥l,CE⊥l,
∴∠BDA=∠CEA=90°,
∴∠ABD+∠DAB=90°.
∵∠BAC=90°,
∴∠DAB+∠CAE=90°,
∴∠ABD=∠CAE.
在△ABD和△CAE中,
,
∴△ABD≌△CAE(AAS),
∴AD=CE,BD=AE
∵DE=AD﹣AE,
∴DE=CE﹣BD.
【题目】某校九年级(1)班全体学生上周末进行体育测试的成绩(满分70分)统计如表:
成绩(分) | 45 | 50 | 55 | 60 | 65 | 68 | 70 |
人数(人) | 2 | 6 | 10 | 7 | 6 | 5 | 4 |
根据表中的信息判断,下列结论中错误的是( )
A. 该班一共有40名同学
B. 该班学生这次测试成绩的众数是55分
C. 该班学生这次测试成绩的中位数是60分
D. 该班学生这次测试成绩的平均数是59分