题目内容

【题目】AB在数轴上表示的数如图所示. 动点P从点A出发,沿数轴向右以每秒2个单位长度的速度运动到点B,再从点B以同样的速度运动到点A停止,设点P运动的时间为t秒,解答下列问题.

1)当t=2时,AP= 个单位长度,当t=6时,AP= 个单位长度;

2)直接写出整个运动过程中AP的长度(用含t的代数式表示)

3)当AP=6个单位长度时,求t的值;

4)当点P运动到线段AB3等分点时,t的值为 .

【答案】14, 8;(22t个单位长度或20-2t个单位长度;(3t=37;(4.

【解析】

1)当t=2时,列式计算即可;当t=6时,点P到达点B,而且从点B向左运动1秒,即可求出答案;

2)根据题意,可分为两个过程,点P从点A运动到点B,和从点B运动回点A,进行分类讨论,即可得到答案;

3)当AP=6,分别代入(2)中的结论,即可求出答案;

4)根据题意,AB的三等分点有两个点,可分为4种情况进行分析,即可得到答案.

解:(1)根据题意,

∴点P从点A运动到点B需要:秒;

∴当t=2时,

t=6时,

故答案为:48 .

2)根据题意,

时,

时,

∴整个运动过程中AP的长度为:2t个单位长度或个单位长度;

3)∵AP=6

2t=6时,解得:t=3

20-2t=6时,解得:t=7

4)∵AB=10

①当时,

②当时,

③当时,

④当时,

综上所述,t的值为:.

练习册系列答案
相关题目

【题目】如图,在RtABC中,∠C=90°,以AC为直径作⊙O,交ABD,过点OOEAB,交BCE.

(1)求证:ED为⊙O的切线;

(2)如果⊙O的半径为,ED=2,延长EO交⊙OF,连接DF、AF,求ADF的面积.

【答案】(1)证明见解析;(2)

【解析】试题分析:(1)首先连接OD,由OEAB,根据平行线与等腰三角形的性质,易证得 即可得,则可证得的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得的长,又由OEAB,证得根据相似三角形的对应边成比例,即可求得的长,然后利用三角函数的知识,求得的长,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

试题解析:(1)证明:连接OD

OEAB

∴∠COE=CADEOD=ODA

OA=OD,

∴∠OAD=ODA

∴∠COE=DOE

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切线;

(2)连接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB

∴△COE∽△CAB

AB=5,

AC是直径,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面积为

型】解答
束】
25

【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.

(1)求ba的关系式和抛物线的顶点D坐标(用a的代数式表示);

(2)直线与抛物线的另外一个交点记为N,求DMN的面积与a的关系式;

(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网