题目内容
在数学课上,同学们研究图形的拼接问题.
比如:两个全等的等腰直角三角形纸片既能拼成一个大的等腰直角三角形(如图1),也能拼成一个正方形(如图2).
(1)现有两个相似的直角三角形纸片,各有一个角为,恰好可以拼成另一个含有30°角的直角三角形,那么在原来的两个三角形纸片中,较大的与较小的纸片的相似比为________,请画出拼接的示意图;
(2)现有一个矩形恰好由三个各有一个角为的直角三角形纸片拼成,请你画出两种不同拼法的示意图.在拼成这个矩形的三角形中,若每种拼法中最小的三角形的斜边长为,请直接写出每种拼法中最大三角形的斜边长.
比如:两个全等的等腰直角三角形纸片既能拼成一个大的等腰直角三角形(如图1),也能拼成一个正方形(如图2).
(1)现有两个相似的直角三角形纸片,各有一个角为,恰好可以拼成另一个含有30°角的直角三角形,那么在原来的两个三角形纸片中,较大的与较小的纸片的相似比为________,请画出拼接的示意图;
(2)现有一个矩形恰好由三个各有一个角为的直角三角形纸片拼成,请你画出两种不同拼法的示意图.在拼成这个矩形的三角形中,若每种拼法中最小的三角形的斜边长为,请直接写出每种拼法中最大三角形的斜边长.
(1),拼图见解析;(2)拼图见解析,最大三角形的斜边长分别是,.
试题分析:(1)根据相似三角形和含30度直角三角形的性质可得.
(2)根据相似三角形和矩形的性质可得.
试题解析:(1),拼图如下:
(2)拼图如下:
最大三角形的斜边长分别是,.
练习册系列答案
相关题目