题目内容
如图,在□ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.
(1)求证:△ADF∽△DEC;
(2)若AB=8,AD=6,AF=4,求AE的长.
(1)求证:△ADF∽△DEC;
(2)若AB=8,AD=6,AF=4,求AE的长.
(1)证明见解析;(2)6.
试题分析:(1)利用对应两角相等,证明两个三角形相似△ADF∽△DEC;
(2)利用△ADF∽△DEC,可以求出线段DE的长度;然后在在Rt△ADE中,利用勾股定理求出线段AE的长度.
(1)证明:∵?ABCD,∴AB∥CD,AD∥BC,
∴∠C+∠B=180°,∠ADF=∠DEC.
∵∠AFD+∠AFE=180°,∠AFE=∠B,
∴∠AFD=∠C.
在△ADF与△DEC中,
∴△ADF∽△DEC.
(2)∵△ADF∽△DEC,
∴
又 ∵ CD=AB=8,AD=6,AF= 4.
代入求得DE="12" ,
四边形ABCD是平行四边形,又∵AE⊥BC,∴ AE⊥AD,
在Rt△AED中,由勾股定理可得AE=6.
练习册系列答案
相关题目