题目内容
【题目】如图1,在△ABC中,AB=AC,点D是BC的中点,点E在AD上,连接BE、CE.
(1)求证:BE=CE
(2)如图2,若BE的延长线交AC于点F,且BF ⊥AC,垂足为F,原题设其它条件不变.求证:∠CAD=∠CBF
(3)在(2)的条件下,若∠BAC=45,判断△CFE的形状,并说明理由.
【答案】证明见解析
【解析】试题分析:(1)由条件证明△ABE≌△ACE即可;
(2)利用垂直的定义可求得∠CAD+∠C=∠CBF+∠C=90°,可证得结论;
(3)由条件可证明△AEF≌△BCF,可得AF=BF,可得出结论.
解:(1)∵AB=AC,D是BC的中点
∴∠BAE=∠CAE
在△ABE和△ACE中,
∴△ABE≌△ACE(SAS)
∴BE=CE
(2)∵AB=AC,点D是BC的中点
∴AD⊥BC
∴∠CAD+∠C=90°
∵BF⊥AC
∴∠CBF+∠C=90°
图一 图二
∴∠CAD=∠CBF
(3)∵∠BAC=45°,BF⊥AF
∴△ABF为等腰直角三角形
∴AF=BF
在△AEF和△BCF中,
∴△AEF≌△BCF(ASA).
∴EF=CF
∵∠CFE=90°
∴△CFE为等腰直角三角形.
练习册系列答案
相关题目