题目内容
【题目】如果正方形的边长为4,为边上一点,,为线段上一点,射线交正方形的一边于点,且,那么的长为__________.
【答案】或
【解析】
因为BM可以交AD,也可以交CD.分两种情况讨论:
①BM交AD于F,则△ABE≌△BAF.推出AF=BE=3,所以FD=EC,连接FE,则四边形ABEF为矩形,所以M为该矩形的对角线交点,所以BM=AC的一半,利用勾股定理得到AE等于5,即可求解;
②BM交CD于F,则BF垂直AE(通过角的相加而得)且△BME∽△ABE,则,所以求得BM等于.
分两种情况讨论:
①BM交AD于F,
∵∠ABE=∠BAF=90°,AB=BA,AE=BF,
∴△ABE≌△BAF(HL)
∴AF=BE,
∵BE=3,
∴AF=3,
∴FD=EC,
连接FE,则四边形ABEF为矩形,
∴BM=AE,
∵AB=4,BE=3,
∴AE==5,
∴BM=;
②BM交CD于F,
∵△ABE≌△BCF,
∴∠BAE=∠CBF,
∵∠BAE+∠BEA=90°,
∴∠BEM+∠EBM=90°,
∴∠BME=90°,
即BF垂直AE,
∴△BME∽△ABE,
∴,
∵AB=4,AE=5,BE=3,
∴BM=.
综上,故答案为:或
练习册系列答案
相关题目