题目内容
【题目】已知:如图,分别为定角( 大小不会发生改变) 内部的两条动射线,
(1)当运动到如图1的位置时,,求的度数.
(2)在(1)的条件下(图2),射线分别为的平分线,求的度数.
(3)在(1)的条件下(图3),是外部的两条射线, ,平分,平分,求的度数.
【答案】(1)∠AOD=70°;(2)∠MON=50°;(3)∠POQ=110°.
【解析】
(1)根据角的定义可以得出∠AOC+∠BOD=∠AOB+∠COD+2∠BOC,然后可先求出∠BOC,最后再进一步求解即可;
(2)利用角平分线性质进一步求解即可;
(3)根据题意先求出∠POD+∠AOQ的值,然后再进一步求解即可.
(1)∵∠AOC+∠BOD=100°,∠AOB+∠COD=40°,
又∵∠AOC+∠BOD=∠AOB+∠COD+2∠BOC,
∴40°+ 2∠BOC=100°,
∴∠BOC=30°,
∴∠AOD=∠BOC+∠AOB+∠COD=70° ;
(2)∵OM、ON分别为∠AOB、∠COD的平分线,
∴∠CON+∠BOM= (∠AOB+∠COD)=×40°=20°,
∴∠MON=∠CON+∠BOM+∠BOC=20°+30°=50°;
(3)∵OP平分∠EOD, OQ平分∠AOF,
∴∠POD+∠AOQ =(∠EOD+∠AOF),
∵∠EOD=∠EOB∠BOD=90°∠BOD,
同理,∠AOF = 90°∠AOC,
∴∠EOD+∠AOF=180°∠BOD +∠AOC)=180°100°=80°,
∴∠POD+∠AOQ =(∠EOD+∠AOF)=40°,
∴∠POQ=∠POD+∠AOQ+∠AOD=40°+70°=110°.
【题目】在某书店准备购进甲、乙两种图书共100本,购书款不高于2224元,两种图书的进价、售价如下表所示:
甲种图书 | 乙种图书 | |
进价(元/本) | 16 | 28 |
售价(元/本) | 26 | 40 |
请解答下列问题:
(1)在这批图书全部售出的条件下,书店如何进货利润最大?最大利润是多少?
(2)书店计划用(1)中的最大利润购买单价分别为72元、96元的排球、篮球捐给贫困山区的学校,那么在钱恰好用尽的情况下,最多可以购买排球和篮球共多少个?
【题目】在“朗读者”节目的影响下,某中学在暑期开展了“好书伴我成长”读书话动,并要求读书要细读,最少要读完2本书,最多不建议超过5本。初一年级5个班,共200名学生,李老师为了了解学生暑期在家的读书情况,给全班同学布置了一项调查作业:了解初一年级学生暑期读书情况.班中三位同学各自对初一年级读书情况进行了抽样调查,并将数据进行了整理,绘制的统计图表分别为表1、表2、表3.
表1:在初一年级随机选择5名学生暑期读书情况的统计表
阅读书数量(本) | 2 | 3 | 4 | 5 |
人数 | 2 | 1 | 1 | 1 |
表2:在初一年级“诵读班”班随机选取20名学生暑期读书情况的统计表
阅读书数量(本) | 2 | 3 | 4 | 5 |
人数 | 0 | 1 | 4 | 15 |
表3:在初一年级随机选取20名学生暑期读书情况的统计表
阅读书数量(本) | 2 | 3 | 4 | 5 |
人数 | 2 | 8 | 6 | 4 |
问题1:根据以上材料回答:三名同学中,哪一位同学的样本选取更合理,并简要说明其他两位同学选取样本的不足之处;
老师又对合理样本中的所有学生进行了“阅读动机”的调研,并制作成了如下统计图.
问题2:通过统计图的信息你认为“阅读动机”
在“40%”的群体,暑期读几本书的可能性大,并说出你的理由.