题目内容
【题目】某射击队准备从甲、乙两名队员中选取一名队员代表该队参加比赛,特为甲、乙两名队员举行了一次选拔赛,要求这两名队员各射击10次.比赛结束后,根据比赛成绩情况,将甲、乙两名队员的比赛成绩制成了如下的统计表:
甲队员成绩统计表
成绩(环) | 7 | 8 | 9 | 10 |
次数(次) | 5 | 1 | 2 | 2 |
乙队员成绩统计表
成绩(环) | 7 | 8 | 9 | 10 |
次数(次) | 4 | 3 | 2 | 1 |
(1)经过整理,得到的分析数据如表,求表中的,,的值.
队员 | 平均数 | 中位数 | 众数 | 方差 |
甲 | 8 | 7.5 | 7 | |
乙 | 7 | 1 |
(2)根据甲、乙两名队员的成绩情况,该射击队准备选派乙参加比赛,请你写出一条射击队选派乙的理由.
【答案】(1)a=8,b=8,c=1;(2)由于乙的中位数大于甲的中位数,根据中位数的意义,乙的高分次数比甲多
【解析】
(1)根据加权平均数的公式、中位数的定义、方差的公式计算可得;
(2)对比平均数、中位数、众数、方差,再根据中位数的意义得出选派乙的依据.
解:(1)乙的平均数为:,
乙的中位数为:,
甲的方差为:,
故a=8,b=8,c=1.
(2)由于乙的中位数大于甲的中位数,根据中位数的意义,乙大于等于8分的次数比甲多.
练习册系列答案
相关题目
【题目】勾股定理是数学中最常见的定理之一,熟练的掌握勾股数,对迅速判断、解答题目有很大帮助,观察下列几组勾股数:
1 | |||
2 | |||
3 | |||
4 | |||
… | … | … | … |
(1)你能找出它们的规律吗?(填在上面的横线上)
(2)你能发现,,之间的关系吗?
(3)对于偶数,这个关系 (填“成立”或“不成立”)吗?
(4)你能用以上结论解决下题吗?