题目内容
【题目】如图,抛物线m:y=ax2+b(a<0,b>0)与x轴于点A、B(点A在点B的左侧),与y轴交于点C.将抛物线m绕点B旋转180°,得到新的抛物线n,它的顶点为C1,与x轴的另一个交点为A1.若四边形AC1A1C为矩形,则a,b应满足的关系式为( )
A. ab=﹣2 B. ab=﹣3 C. ab=﹣4 D. ab=﹣5
【答案】B
【解析】分析:利用矩形性质得出要使平行四边形AC1A1C是矩形,必须满足AB=BC,即可求出.
详解:令x=0,得:y=b.∴C(0,b).
令y=0,得:ax2+b=0,∴x=±,∴A(﹣,0),B(,0),∴AB=2,BC==.
要使平行四边形AC1A1C是矩形,必须满足AB=BC,∴2=.∴4×(﹣)=b2﹣,∴ab=﹣3,∴a,b应满足关系式ab=﹣3.
故选B.
练习册系列答案
相关题目
【题目】某射击队准备从甲、乙两名队员中选取一名队员代表该队参加比赛,特为甲、乙两名队员举行了一次选拔赛,要求这两名队员各射击10次.比赛结束后,根据比赛成绩情况,将甲、乙两名队员的比赛成绩制成了如下的统计表:
甲队员成绩统计表
成绩(环) | 7 | 8 | 9 | 10 |
次数(次) | 5 | 1 | 2 | 2 |
乙队员成绩统计表
成绩(环) | 7 | 8 | 9 | 10 |
次数(次) | 4 | 3 | 2 | 1 |
(1)经过整理,得到的分析数据如表,求表中的,,的值.
队员 | 平均数 | 中位数 | 众数 | 方差 |
甲 | 8 | 7.5 | 7 | |
乙 | 7 | 1 |
(2)根据甲、乙两名队员的成绩情况,该射击队准备选派乙参加比赛,请你写出一条射击队选派乙的理由.