题目内容

【题目】如图,在正方形网格图中建立一直角坐标系,一条圆弧经过网格点ABC,请在网格中进行下列操作:

(1)请在图中确定该圆弧所在圆心D点的位置,D点坐标为   

(2)连接ADCD,求⊙D的半径及扇形DAC的圆心角度数;

(3)若扇形DAC是某一个圆锥的侧面展开图,求该圆锥的底面半径.

【答案】D(2,0)

【解析】(1)找到AB,BC的垂直平分线的交点即为圆心坐标;
(2)利用勾股定理可求得圆的半径;易得△AOD≌△DEC,那么∠OAD=∠CDE,即可得到圆心角的度数为90°;
(3)求得弧长,除以2π即为圆锥的底面半径.

解:(1)如图;D(2,0)

(2)如图;AD===2

作CE⊥x轴,垂足为E.

∵△AOD≌△DEC,

∴∠OAD=∠CDE,

又∵∠OAD+∠ADO=90°,

∴∠CDE+∠ADO=90°,

∴扇形DAC的圆心角为90度;

(3)∵弧AC的长度即为圆锥底面圆的周长.l===π,

设圆锥底面圆半径为r,则2πr=π,

∴r=

“点睛”本题用到的知识点为:非直径的弦的垂直平分线经过圆心;圆锥的弧长等于底面周长.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网